Module dimdrop.regularizers.tsne_reg
Source code
from ..losses import TSNELoss
from keras.callbacks import Callback
class TSNERegularizer(Callback):
"""
Regularizer using the tsne loss function.
Parameters
----------
dim : int,
the dimension of the layer on which the regularizer is working
joint_prob : array
The joint probabilities of the input data
batch_size : int
The batch size of the training, default `100`.
Attributes
----------
batch : int
The current batch
loss : `dimdrop.losses.TSNELoss`
The t-SNE loss function.
"""
__name__ = 'tsne_regularizer'
def __init__(self, dim, joint_prob, batch_size=100):
self.dim = dim
self.joint_prob = joint_prob
self.batch_size = batch_size
self.batch = 0
self.loss = TSNELoss(self.dim, self.batch_size)
def on_batch_begin(self, batch, logs={}):
self.batch = batch
def __call__(self, activations):
return self.loss(self.joint_prob[self.batch], activations)
Classes
class TSNERegularizer (dim, joint_prob, batch_size=100)
-
Regularizer using the tsne loss function.
Parameters
dim
:int
,- the dimension of the layer on which the regularizer is working
joint_prob
:array
- The joint probabilities of the input data
batch_size
:int
- The batch size of the training, default
100
.
Attributes
batch
:int
- The current batch
loss
:<a title="dimdrop.losses.TSNELoss" href="../losses/index.html#dimdrop.losses.TSNELoss">
TSNELoss</a>
- The t-SNE loss function.
Source code
class TSNERegularizer(Callback): """ Regularizer using the tsne loss function. Parameters ---------- dim : int, the dimension of the layer on which the regularizer is working joint_prob : array The joint probabilities of the input data batch_size : int The batch size of the training, default `100`. Attributes ---------- batch : int The current batch loss : `dimdrop.losses.TSNELoss` The t-SNE loss function. """ __name__ = 'tsne_regularizer' def __init__(self, dim, joint_prob, batch_size=100): self.dim = dim self.joint_prob = joint_prob self.batch_size = batch_size self.batch = 0 self.loss = TSNELoss(self.dim, self.batch_size) def on_batch_begin(self, batch, logs={}): self.batch = batch def __call__(self, activations): return self.loss(self.joint_prob[self.batch], activations)
Ancestors
- keras.callbacks.Callback
Methods
def on_batch_begin(self, batch, logs={})
-
Source code
def on_batch_begin(self, batch, logs={}): self.batch = batch