Module dimdrop.util.transform

Source code
import numpy as np


class Transform:
    """
    Transform input data

    Parameters
    ----------
    scale : bool
        Whether to scale the input data
    log : bool
        Whether to take the log of the input data

    Returns
    -------
    The transformed input data
    """

    def __init__(self, scale=True, log=False):
        self.scale = scale
        self.log = log

    def __call__(self, data):
        if not self.scale and not self.log:
            return data
        if self.log:
            output = np.log2(data + 1)
        if self.scale:
            output = np.zeros(data.shape, dtype=np.float32)
            for i in range(data.shape[0]):
                output[i, :] = data[i, :] / np.max(data[i, :])
        return output

Classes

class Transform (scale=True, log=False)

Transform input data

Parameters

scale : bool
Whether to scale the input data
log : bool
Whether to take the log of the input data

Returns

The transformed input data
 
Source code
class Transform:
    """
    Transform input data

    Parameters
    ----------
    scale : bool
        Whether to scale the input data
    log : bool
        Whether to take the log of the input data

    Returns
    -------
    The transformed input data
    """

    def __init__(self, scale=True, log=False):
        self.scale = scale
        self.log = log

    def __call__(self, data):
        if not self.scale and not self.log:
            return data
        if self.log:
            output = np.log2(data + 1)
        if self.scale:
            output = np.zeros(data.shape, dtype=np.float32)
            for i in range(data.shape[0]):
                output[i, :] = data[i, :] / np.max(data[i, :])
        return output