Module dimdrop.util.transform
Source code
import numpy as np
class Transform:
"""
Transform input data
Parameters
----------
scale : bool
Whether to scale the input data
log : bool
Whether to take the log of the input data
Returns
-------
The transformed input data
"""
def __init__(self, scale=True, log=False):
self.scale = scale
self.log = log
def __call__(self, data):
if not self.scale and not self.log:
return data
if self.log:
output = np.log2(data + 1)
if self.scale:
output = np.zeros(data.shape, dtype=np.float32)
for i in range(data.shape[0]):
output[i, :] = data[i, :] / np.max(data[i, :])
return output
Classes
class Transform (scale=True, log=False)
-
Transform input data
Parameters
scale
:bool
- Whether to scale the input data
log
:bool
- Whether to take the log of the input data
Returns
The
transformed
input
data
Source code
class Transform: """ Transform input data Parameters ---------- scale : bool Whether to scale the input data log : bool Whether to take the log of the input data Returns ------- The transformed input data """ def __init__(self, scale=True, log=False): self.scale = scale self.log = log def __call__(self, data): if not self.scale and not self.log: return data if self.log: output = np.log2(data + 1) if self.scale: output = np.zeros(data.shape, dtype=np.float32) for i in range(data.shape[0]): output[i, :] = data[i, :] / np.max(data[i, :]) return output