
ACC JOURNAL Year, Volume --, Issue - DOI: will be inserted by the journal editor.

RESEARCH AND DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK FOR

SPECTRAL DATA
Theo Dedeken

Ghent University
Faculty of Sciences
Computer Science

Sint-Pietersnieuwstraat 25, 9000 Gent, Belgium
theo.dedeken@ugent.be

Abstract

There is a global challenge to determine the state of the inventory of transport and storage
containers for high radioactive waste (spent fuel assemblies). One possible solution is to
perform vibration analyses and evaluate vibration responses by using artificial neural
networks. For this approach first investigations have been carried out. Vibration data is
obtained from a testing setup modeling the nuclear storage fuel assemblies and is converted to
the frequency domain via the Fourier transform. Raw spectral data is first prepared by
normalization, data augmentation and limiting the frequency range. These measures are
proven to have significant impact on the overall performance of the training of the neural
networks. Using fully connected and convolutional neural networks, classification and
regression is performed on the spectral data. Classification is shown to be possible with very
high accuracy and regression has decent results with options for improvement in later stages.
Convolutional neural networks are shown to be superior in both cases.

Keywords

Neural networks; Spectral data; Nuclear waste monitoring; Vibration analysis

Introduction

The storage of nuclear waste is a complex and worldwide problem. Currently there are little to
none long term solutions available for storing spent fuel assemblies, so the waste is stored in
intermediate transport and storage containers inside the nuclear power plants. These storage
containers require active maintaining and monitoring to avoid dangerous and environmentally
damaging situations.

To research and develop novel solutions to these problems a cooperative project was set up
between Dresden Technical University (TUD) and Zittau/Görlitz University of Applied
Sciences (HSZG). In light of this project different possible non-invasive measurement
principles were proposed [1]. This paper focuses on the monitoring of containers using
vibration analysis and training neural networks on the obtained spectral data to perform
classification and assessment of the current state of the storage container inventory.

1 Methods

1.1 Data acquisition

To train a neural network, first a sufficient amount of data needs to be collected. To acquire
the data necessary for further research, a testing setup was developed and measurements were
performed.

Scale models representing the actual fuel assemblies contained in the storage containers were
constructed. The model is assembled as a collection of 16 tubes arranged in a four by four
pattern. It is possible to change the amount of filament in these tubes. This way a number of
different states were constructed each with a different configuration.

Two main rounds of experiments were performed, the first round with five different states
ranging from full to empty, in Fig 1 the configured states for this round are shown. Later the
amount of states was increased to a total of 15. The results presented in section 2 use the data
obtained from the last set of experiments.

Source: Own
Fig 1: The prepared states for the first round of experiments

To measure the vibrations on the fuel assembly models, a testing rig was set up were the
model could be suspended in the air, in Fig 1 this setup is presented. At three positions on the
model sensors were attached to register the velocity of that position over time. The three
sensors are positioned along the same axis as to where the impact is occurring. To perform a
measurement an impact hammer was used to hit the assembly, the resulting vibrations were
then registered and normalized according to the vibrations measured on the hammer. This
process was repeated ten times for each state.

1.2 Data preparation

The raw data acquired from the sensors is not in a format that is useful for analysis and
classification using neural networks. To better capture the unique properties of each signal we
decompose the time series in the frequency domain using the Fourier transform. This leaves
us with the frequency values in between 0 Hz and 2000 Hz (Fig 2).

Source: Own
Fig 2: All obtained frequency domains for the second round of experiments

1.2.1 Removing noise

When looking closer at the variance of the calculated amplitude of each frequency over
measurements of the same state (Fig 3), it becomes clear that there are two zones in the
spectrum with variance of different magnitude. The calculated amplitudes of the frequencies
ranging from 0 Hz to 700 Hz are highly similar in over multiple measurements of the same
state. The higher frequencies are exceptionally dissimilar over measurements of the same
state. This increase in variance can mostly be attributed to noise caused both by measurement
inaccuracies and outside factors.

When training a neural network on samples which are very different but still map to the same
output, we run into problems where the network has difficulties to converge to a state that can
handle each case of input. Keeping in mind the construction of the spectral domain we can
assume that most of the original vibration data is defined by the values of the lower
frequencies. To help the training performance of the used models we limit the frequency range
to the interval [0 Hz, 800 Hz].

Source: Own
Fig 3: Variance of the amplitude for each frequency over measurements of the same state

1.2.2 Data normalization

Another technique used to improve training performance of the neural networks was to
normalize the input data. This was achieved by subtracting the mean of the spectrum to each
value and dividing by the standard deviation afterwards to obtain a data sample with mean
zero and standard deviation of one.

1.2.3 Data augmentation techniques

As there were only ten measurements for each state, the amount of data to train the neural
networks on was very limited. To improve the performance and robustness of the network
data augmentation inspired by previous work in [2] was added. The techniques employed in
this case were adding an offset to the original spectrum and multiplication of the spectrum.
Offset was varied over ±0.1 times the standard deviation of the original sample and
multiplication was varied over 1±0.1 times the standard deviation. For each sample nine extra
samples were constructed: three using the offset technique, three using multiplication and
three using the combination. This effectively increased the size of our dataset with a factor of
ten. It is important to note that the augmentation was executed after the normalization of the
data, otherwise the normalization operation would convert the extra samples back to the
original sample.

1.3 Used models

Training was performed on the two most used variants of feed-forward neural networks, the
standard fully connected and convolutional neural networks. An architecture of comparable
complexity for each one of the variants was constructed and trained on the prepared spectral
data. See section 2.1 for the comparison between the different models.

The networks were constructed in the Keras [3] framework using the Tensorflow [4] backend.
As for the optimizer, an instance of the Adam optimizer was used, configured with a learning
rate of 0.0001.

1.3.1 Fully connected neural network

The fully connected network shown in Fig 4 consists of an input layer, two hidden layers and
the output layer. The hidden layers have 256 neurons and are combined with the Exponential
Linear Unit (ELU) activation function and a dropout measure dropping out 25% of the inputs.

The depth of the neural network was kept small as increases in layers did not cause any major
improvements in performance of the network. The ELU activation function has good training
performance as it does not have the same problems with vanishing gradient compared to the
sigmoid activation function. Dropout is added as a measure to make the resulting network
more robust and prevent overfitting of the data.

Source: Own
Fig 4: Fully connected neural network architecture

1.3.2 Convolutional neural network

The convolutional neural network shown in Fig 5 consists of an input layer, three
convolutional layers, one hidden layer and the output layer. The three convolutional layers
have 32, 64 and 128 kernels respectively. After each of the convolutional layers a max pooling
operation is performed with pool size of three. At the end of these layers the input space is
reduced sufficiently to be fully connected to a single hidden layer with ELU activation and a
dropout measure with dropout rate of 25%.

Source: Own
Fig 5: Convolutional neural network architecture

1.4 Training input

In the case of the fully connected network the input of the network is constructed by
concatenating the spectra after data preparation of the three positions. Each amplitude value in
the resulting array then serves as an input node to the neural network.

As for the convolutional neural network, a different approach can be used. Since
convolutional neural networks work on volumes rather than single input nodes we can
construct the input as a two dimensional array by stacking the spectra of each position. This
resembles the way convolutional neural networks are used in the case of colour images where
each image pixel has three components, one for each of the colour channels.

To make sure the model was generalizing well, a validation split of 0.5 was chosen. This
meant that only half of the samples were used in the training of the network. With the addition
of data augmentation, the models still had sufficient data to be trained on.

1.5 Output encoding

Two different types of encoding was used for the expected output for the networks, each of
them more appropriate in different approaches of solving this problem.

1.5.1 One-hot encoding

To convert the state number to this encoding a n-dimensional vector was constructed (n being
the number of states: 5 or 15). In this vector all elements are zero except for the element at the
position of the state being encoded.

This encoding was used to train the networks to do a classification of the input sample. A
property of this encoding is that we can interpret the output as a distribution of how confident
the network is about its prediction, the more confident, the more the input will resemble the
one-hot encoding. If multiple positions in the output are high, we can presume that the
network recognizes properties from both states in the input. To get the output in the desired
format, a softmax activation layer was added as the last layer of the models. With this output
format the categorical cross entropy between the expected output and the actual output was
used as the loss measure while training.

1.5.2 Continuous value

Another way to encode the state of a particular sample is to use a single value. In this case the
state number is converted to a number in the range [0,1]. This is done by linearly interpolating
the states number to the new range.

This encoding was used when solving this problem as a regression problem. As the states are
numbered 1-15 going from empty to full, we can interpret the output as a value representing
the amount of filling in the assembly. To limit the range of the output of the neural network
model, a sigmoid activation layer was added as the last layer of the model. With this output
format the mean squared error between the expected output and the actual output was used as
the loss measure while training.

2 Results

2.1 Comparison of used models

2.1.1 Classification

In Fig 6, the evolution of the accuracy and loss function during training for each to the models
is presented. It is clear to see the convolutional model achieves the best performance in both
categories. However it is important to note that the training of the convolutional generally
requires double the time per training iteration in comparison to the fully connected model. A
possible explanation for this result is that the convolution kernels are able to extract features

from the input like slopes, peaks and valleys while a fully connected model is less likely to
detect these local dependencies between values.

Source: Own
Fig 6: Accuracy and loss metric for the two models

Source: Own
Fig 7: Predictions of the different models for the samples in the test set

In Fig 7 a visual representation of the accuracy of the predictions of both networks is given.
As both networks have high accuracy most points match with the expected values. We can see
that the convolutional network only wrongly classifies one sample of the testing set, while the
fully connected network has worse performance.

Another interesting observation is that the wrong predictions are not close to the actual result.
This could indicate that subsequent states do not show a straightforward evolution, meaning
that states are highly unique and not closely related. This could prove to be a problem when
deploying these models in real world environments as the states in that case would lie in

between the learned states and the drastic changes in spectral data might provoke erroneous
predictions.

2.1.2 Regression

In Fig 8 and Fig 9 the performance of the test set for both models is presented. The first graph
shows the scatter plot mapping the expected value to the predicted value, the second graph
draws the boxplot of the predicted values for each one of the states.

In the case of regression, there is almost no performance difference between the fully
connected and the convolutional neural network. Both networks achieve similar results in
terms of mean squared error. The results currently obtained do not seem useful in practical
application. However an estimation from a regression network could be used in conjunction
with other metrics to provide a more accurate assessment of the state of the container.

Source: Own
Fig 8: Regression performance of the test set for the fully connected neural network

Source: Own
Fig 9: Regression performance of the test set for the convolutional neural network

2.2 Effects of data preparation

In Fig 10, the accuracy of the fully connected model is shown with different configurations of
data preparation, the results for the convolutional model are similar. Four different
configurations were tested, each one with the addition of one extra data preparation step.
Starting of without any data preparation, the accuracy of the network is equivalent as
randomly guessing the state. With the addition of each of the data preparation measures the
accuracy improves accordingly. It can be concluded that each of the data preparation
measures explained in section 1.2 have a significant improvement on the performance of a
particular model.

Source: Own
Fig 10: Performance benefits gained by using data preparation

3 Future work

As the classification spectral data is shown to have very high accuracy, there can be further
experimentation with other fuel assembly states. For example the network can be adapted to
classify the exact tube where there is an anomaly by changing the testing setup to have
sensors on each axis and to prepare the necessary states.

There needs to be further research into the generalization ability of the obtained networks as
they need to work in a real world environment where the container state will not exactly be
one of the learned states.

Additional work is needed in the case of regression as it shows promise to be able to
overcome the limitations with generalization. To accomplish this, the accuracy of the
predicted values needs to be refined. Possibly by tuning the network parameters or by
constructing hybrid models of different regression solutions.

Conclusion

The trained neural networks achieve very high accuracy when classifying spectral data and do
not show signs of overfitting.

When using the models to perform regression, the results are less promising. While it is
possible to predict a value that is rather close to the expected result, the presence of numerous
outliers is worrying. It is possible when fine tuning some of the parameters and combining the
network with other analysis methods, that an estimate with sufficient accuracy can be
achieved.

Convolutional neural networks are best suited for the analysis of spectral data as they can be
built to greater complexity and can recognize local patterns in the data, which certainly is an
advantage when considering spectral data. Even though time complexity is greater for the
convolutional architectures, the time needed for training is still within reasonable bounds.

When applying different data preparation procedures, the performance of all networks
increase accordingly. With the addition of each of the procedures, the overall accuracy of the
networks sees a significant improvement.

Acknowledgements

The investigations are funded by the German Federal Ministry for Economic Affairs and
Energy on the basis of a decision by the German Bundestag. Grant identification number:
1501518A/B

Literature

[1] Schmidt S., Fiss D., Reinicke S., Wagner M., Rachamin R., Kratzsch A., Hampel U.,
Development of a monitoring concept for Transport and Storage Containers for Spent
Fuel and Heat-Generating High-Level Radioactive Waste on Prolonged Intermediate
Storage.

[2] Bjerrum E.J., Glahder M., Skov T., (2017, Oct 5) Data Augmentation of Spectral Data
for Convolutional Neural Network (CNN) Based Deep Chemometrics

[3] Chollet F. and others, (2015) Keras. https://keras.io

[4] Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., … Zheng X., (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems.
https://tensorflow.org

Theo Dedeken

NADPIS ČLÁNKU V ČESKÉM NEBO SLOVENSKÉM JAZYCE

Abstrakt článku v českém nebo slovenském jazyce na 8 – 12 řádků.
Jestliže je článek v českém nebo slovenském jazyce, uveďte na toto místo nadpis článku
a jeho abstrakt v anglickém jazyce.

TITEL DES ARTIKELS IN DEUTSCH

Abstrakt in der deutschen Sprache (8 – 12 Zeilen).
Ist der Artikel in deutscher Sprache verfasst, sind Titel und Abstrakt an dieser Stelle
in englischer Sprache anzuführen.

NAGŁÓWEK ARTYKUŁU W JĘZYKU POLSKIM

Streszczenie artykułu w języku polskim na 8 – 12 linijek.
Jeżeli artykuł napisany jest w języku polskim, należy w tym miejscu umieścić tytuł artykułu
i jego streszczenie w języku angielskim.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

