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Abstract— Advances in flow cytometry allow to measure increasing
amounts of parameters per cell, generating high-dimensional datasets. Vi-
sualizing these datasets in their raw form is tedious and confusing. Dimen-
sionality reduction can be used to reduce the amount of dimensions in the
datasets. When reducing to two dimension we can visualize the dataset in
one scatter plot. We present two autoencoder models that can perform di-
mensionality reduction on a high-dimensional dataset. We compare their
results to UMAP over a few datasets and calculate quality metrics based on
distance ranking and k-ary neighborhoods. Autoencoders retain the struc-
ture of the data more broadly than UMAP, while still producing decent
visualizations.
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I. INTRODUCTION

THE field of computational flow cytometry is fast evolving.
Flow cytometry measures multiple dimensions of cells that

flow in a stream through a system of photonic detectors. Recent
advancements in technology allow for the measurement of mil-
lions of cells with up to 30 parameters per cell. Related to this
measurement technique is mass cytometry that uses mass spec-
trometry to measure up to 100 parameters per cell.

Visualizing this high-dimensional data is a difficult task.
Once the dimensionality goes beyond three dimensions it be-
comes hard to visualize all these dimensions at once. A possible
solution is to select a few dimensions at a time to make a plot,
but by doing this a lot of the structure of the dataset is not visi-
ble. This approach is also not scalable for datasets with a lot of
dimensions.

Dimensionality reduction can reduce the amount of dimen-
sions while preserving a lot of the structure in the dataset. Re-
ducing to two dimensions allows us to visualize the dataset in a
standard scatter plot.

Autoencoders are multilayer neural networks with a small
central layer to reconstruct high-dimensional input data. As au-
toencoders project input data on a code layer with lower dimen-
sion we can use them as dimensionality reduction methods by
first training them on the high-dimensional data. Afterwards the
encoder part of the network can be used as a reducer for the input
data but also for any other data of the same type. This catego-
rizes the autoencoders as parametric dimensionality reduction.

II. METHODS

A. Autoencoder

The use of autoencoder networks to reduce the dimensional-
ity of data was first proposed by Hinton [1] in 2006. The low-
dimensional codes that are generated in the small central layer
by training on the high-dimensional data can be seen as a re-
duction of this data. Our autoencoder model is inspired by this

work but there have been some modifications using some new
insights in machine learning.

Both the encoder and decoder networks have multiple layers.
For these layers we use the ReLU [2] activation function as this
has superior training performance for deep learning models. It
is able to better maintain the gradient of the network when mod-
ifying the weights deeper in the network. No activation func-
tion is added before the central layer to allow for more freedom
in the low-dimensional representations. The optimizer used is
Adam [3] a modern gradient descent algorithm with the addition
of momentum to overcome local minima. It has been found that
this method converges faster than other popular optimizers such
as RMSprop, AdaGrad and AdaDelta. The data is divided in
batches for training. An Early Stopping [4] measure was added
to prevent the network from overfitting and to improve execu-
tion times where additional training would not have resulted in
significant improvements.

B. DC-Kmeans

Autoencoders only optimize to have the output of the network
match the input of the network. This alone does not generate
low-dimensional codes that present a nice visualization of the
data. To solve this Tian and Song [5, 6] independently created
similar solutions that add a clustering objective function to the
standard loss function of an autoencoder network We use the
notation DC-KMeans, short for DeepCluster Kmeans, proposed
by Tian.

We can implement this clustering by adding a regulariser on
the central layer of the network that will minimize this extra ob-
jective function. This regulariser minimizes the following func-
tion:

min :
1

N

N∑
i=1

||xi − x̂i||2 + λ ∗ ||yi − c∗i ||2

s.t. yi = f t(xi) i = 1, . . . , N

(1)

c∗i = argminct−1
j
||yi − ct−1j ||2, j = 1, . . . , k (2)

where f t(·) is the encoder function of the network at the tth

iteration, cj−1j is the jth cluster center computed at the (t−1)th

iteration and c∗i is the closest cluster center of the ith sample
in the central layer. At each optimization step first the network
is updated using the cluster centers computed in the previous
iteration, afterwards the cluster centers are updated using the
output of the changed network:

ctj =

∑
xi∈Ct−1

j
f t(xi)

|Ct−1
j |

(3)



where Ct−1
j is the set of points belonging to cluster cj at itera-

tion t− 1. At the start of training, cluster centers are initialized
randomly.

III. EVALUATION

In their paper on the quality assessment of dimensionality re-
duction Lee and Verleysen [7] propose a unifying framework
for quality measures for dimensionality reduction based on dis-
tance ranking and k-ary neighborhoods This framework is based
on the co-ranking matrix, which can be used to calculate a few
metrics.

A. Co-ranking matrix

To construct the co-ranking matrix we first need to calculate
the pairwise ranking for all points in both the high-dimensional
space and the low-dimensional space. This is done by calculat-
ing the distances for each point to all other points and ordering
them by distance. The rank of point j in relation to point i is then
the position in this ordering, noted pij for the high-dimensional
space and rij for the low-dimensional space. The co-ranking
matrix can then be defined as:

Q = [qmn]1≤m,n≤N−1

with qmn = |{(i, j) : pij = m ∧ rij = n}|
(4)

Each of the co-ranking metrics is calculated over a k-ary
neighborhood, using k we can divide the co-ranking matrix into
regions (Fig. 1). Using these regions we can calculate some
rank-based criteria.
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Fig. 1. Regions in the co-ranking matrix. Depending on the value of k, the
co-ranking matrix can be divided into four regions.

B. Trustworthiness and continuity

Trustworthiness en continuity [8] are related metrics that look
at the points in that are not present in both the low-dimensional
and high-dimensional k-ary neighborhood. Faraway points that
become neighbors decrease trustworthiness and neighbors that
are embedded faraway from each other decrease the continuity.
The formulas for both measures are as follows:

T (k) = 1− 2

Nk(2N − 3k − 1)

∑
(m,n)∈LLk

(m− k)qmn (5)

C(k) = 1− 2

Nk(2N − 3k − 1)

∑
(m,n)∈URk

(s− k)qmn (6)

C. Mean Relative Rank Errors

The Mean Relative Rank Errors (MRRE) [9] are similar but
cover different parts of the co-ranking matrix:

En(k) =
1

Hk

∑
(m,n)∈ULk∪LLk

|m− n|
n

qmn (7)

Ev(k) =
1

Hk

∑
(m,n)∈ULk∪URk

|m− n|
m

qmn (8)

with Hk = N
∑K

k=1
|N−2k+1|

k .

If we mirror the co-ranking matrix over the anti-diagonal we can
calculate the same metrics but over the neighborhood of the k
furthest neighbors. This gives a measure of how well the global
structure of the data is kept in the reduction.

IV. RESULTS

We compare our autoencoder models with UMAP [10], a re-
cent non parametric dimensionality reduction method with ar-
guably better visualizations than t-SNE [11]. For our compari-
son we use 3 datasets:
MNIST A dataset of 28x28 pixel grayscale images of handwrit-
ten digits. There are 10 digit classes (0 through 9) and 70000
total images. This is treated as 70000 different 784 dimensional
vectors.
Flow cytometry The flow cytometry datasets were provided by
the VIB-UGent Center for Inflammation Research. They con-
tain samples from 10 mice, 5 wild type and A20 fl x NKp46
iCre. The samples were stained with 11 different markers and
were accompanied with a manual labeling. From this dataset
50 000 elements were sampled.
Mass cytometry The VIB-UGent Center for Inflammation Re-
search also provided a mass cytometry dataset. This dataset con-
tains a sample where IFNa & LPS is stimulated. The samples
were stained with 33 different markers and were accompanied
with a manual labeling. From this dataset 50 000 elements were
sampled.

Each of these datasets got visualized by UMAP, the standard
autoencoder and DC-Kmeans. The UMAP parameters are kept
at the defaults, with the exception of the number of neighbors
which is set to 30. The autoencoders are built with three hidden
layers in both the encoder and decoder part, their sizes are 1024
– 512 – 256. The learning rate is set to 0.001 and batch size to
100.

A. Visualization

In Fig. 2 we see the visualizations of the different datasets
for UMAP and both autoencoder models. UMAP forms well
separated clusters of data in most cases, in the case of MNIST



some groups are connected, they correspond to the digit sets
{4, 7, 9} and {3, 5, 8}, which are visually quite similar. The
standard autoencoder tends to form a star pattern around zero as
values inside the network generally stay close to zero because
of the activation functions. The different groups of digits are
not so well separated, because of the coloring we do see that
the groups are not overlapping much. Using the extra cluster-
ing objective we see the formation of more uniform clusters.
The separation between clusters is again less than UMAP but
we do see that there are regions with lower density separating
the groups of the datasets which is enough if a cluster algorithm
like DBSCAN [12] is used.

Fig. 2. Visual comparison of UMAP and autoencoder embeddings for a number
of real world datasets. Points are colored using the class information of the
datasets.

B. Quality measures

In Fig 3 the results for the quality measures for each model
and dataset are given. The measures are calculated based on a
neighborhood of 30 elements, the metrics based on the mirrored
matrix are prefixed with ‘i’.

It is clear to see that UMAP preserves the local structure bet-
ter but both autoencoders are not far behind. With the clustering
objective we do see that trustworthiness and En can be lower.
This means that some points that are faraway from each other in
the high-dimensional space are in each others neighborhood in
the visualization.

When we look at the preservation of neighborhoods of fur-
thest points we see that autoencoders score better than UMAP.
We can conclude that autoencoders are more capable in keeping
the global structure of the dataset intact.

C. Execution times

In table I we see the execution times for the different models
and datasets. We see that the amount of dimensions do not have

Fig. 3. Quality measures of UMAP and autoencoder embeddings for a number
of real world datasets. A higher score means a better result for the measure.

that much of an effect for the execution times for UMAP. This
is due to the algorithm, that is used for determining the near-
est neighbors of each point, not being dependent on the amount
of dimensions. In the case of the autoencoder models we do see
that time increases linearly with the amount of dimensions. This
is to be expected as the trainable parameters of the networks in-
crease linearly with the amount of dimensions of the input data.
We also see that the addition of the extra clustering objective
made the DC-Kmeans model a lot slower. The time complex-
ity increases quadratically with the amount of elements to be
trained instead of linearly like the standard autoencoder.

TABLE I
EXECUTION TIMES FOR UMAP AND AUTOENCODER MODELS FOR A

NUMBER OF REAL WORLD DATASETS. TIMES ARE IN MM:SS FORMAT.

UMAP Autoencoder DC-Kmeans
MNIST 01:36 03:29 28:12

Flow cytometry 01:01 00:52 08:58
Mass cytometry 01:13 00:53 09:43

V. CONCLUSION

Autoencoders can generate a low-dimensional representation
that captures the local and global structure of a high-dimensional
dataset. Visually this representation is quite poor. Additional
objective functions can improve this but this comes at a cost
in time complexity. We can conclude that maintaining the local
structure is more important than the global structure to get a nice
visual result. This means that distorting the global structure is
sometimes necessary to for a clear visualization.

The parametric property of autoencoders can prove very use-
ful as previously trained networks can be used to quickly visu-
alize other datasets of the same type of data. This is not possible
with non-parametric methods such as t-SNE and UMAP.
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